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Abstract

The low displacement rank (LDR) framework for structured matrices represents a
matrix through two displacement operators and a low-rank residual. Existing use of
LDR matrices in deep learning has applied fixed displacement operators encoding
forms of shift invariance akin to convolutions. We introduce a class of LDR
matrices with more general displacement operators, and explicitly learn over both
the operators and the low-rank component. This class generalizes several previous
constructions while preserving compression and efficient computation. We prove
bounds on the VC dimension of multi-layer neural networks with structured weight
matrices and show empirically that our compact parameterization can reduce the
sample complexity of learning. When replacing weight layers in fully-connected,
convolutional, and recurrent neural networks for image classification and language
modeling tasks, our new classes exceed the accuracy of existing compression
approaches, and on some tasks also outperform general unstructured layers while
using more than 20x fewer parameters.

1 Introduction

Recent years have seen a surge of interest in structured representations for deep learning, motivated
by achieving compression and acceleration while maintaining generalization properties. A popular
approach for learning compact models involves constraining the weight matrices to exhibit some form
of dense but compressible structure and learning directly over the parameterization of this structure.
Examples of structures explored for the weight matrices of deep learning pipelines include low-rank
matrices [15, 42], low-distortion projections [49], (block-)circulant matrices [8, 17], Toeplitz-like
matrices [34, 45], and constructions derived from Fourier-related transforms [37]. Though they confer
significant storage and computation benefits, these constructions tend to underperform general fully-
connected layers in deep learning. This raises the question of whether broader classes of structured
matrices can achieve superior downstream performance while retaining compression guarantees.

Our approach leverages the low displacement rank (LDR) framework (Section 2), which encodes
structure through two sparse displacement operators and a low-rank residual term [27]. Previous
work studying neural networks with LDR weight matrices assumes fixed displacement operators and
learns only over the residual [45, 50]. The only case attempted in practice that explicitly employs the
LDR framework uses fixed operators encoding shift invariance, producing weight matrices which
were found to achieve superior downstream quality than several other compression approaches [45].
Unlike previous work, we consider learning the displacement operators jointly with the low-rank
residual. Building upon recent progress on structured dense matrix-vector multiplication [14], we
introduce a more general class of LDR matrices and develop practical algorithms for using these
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matrices in deep learning architectures. We show that the resulting class of matrices subsumes
many previously used structured layers, including constructions that did not explicitly use the LDR
framework [17, 37]. When compressing weight matrices in fully-connected, convolutional, and
recurrent neural networks, we empirically demonstrate improved accuracy over existing approaches.
Furthermore, on several tasks our constructions achieve higher accuracy than general unstructured
layers while using an order of magnitude fewer parameters.

To shed light on the empirical success of LDR matrices in machine learning, we draw connections to
recent work on learning equivariant representations, and hope to motivate further investigations of
this link. Notably, many successful previous methods for compression apply classes of structured
matrices related to convolutions [8, 17, 45]; while their explicit aim is to accelerate training and reduce
memory costs, this constraint implicitly encodes a shift-invariant structure that is well-suited for
image and audio data. We observe that the LDR construction enforces a natural notion of approximate
equivariance to transformations governed by the displacement operators, suggesting that, in contrast,
our approach of learning the operators allows for modeling and learning more general latent structures
in data that may not be precisely known in advance.

Despite their increased expressiveness, our new classes retain the storage and computational benefits
of conventional structured representations. Our construction provides guaranteed compression (from
quadratic to linear parameters) and matrix-vector multiplication algorithms that are quasi-linear in
the number of parameters. We additionally provide the first analysis of the sample complexity of
learning neural networks with LDR weight matrices, which extends to low-rank, Toeplitz-like and
other previously explored fixed classes of LDR matrices. More generally, our analysis applies to
structured matrices whose parameters can interact multiplicatively with high degree. We prove that
the class of neural networks constructed from these matrices retains VC dimension almost linear in
the number of parameters, which implies that LDR matrices with learned displacement operators are
still efficiently recoverable from data. This is consistent with our empirical results, which suggest
that constraining weight layers to our broad class of LDR matrices can reduce the sample complexity
of learning compared to unstructured weights.

We provide a detailed review of previous work and connections to our approach in Appendix B.

Summary of contributions:

• We introduce a rich class of LDR matrices where the displacement operators are explic-
itly learned from data, and provide multiplication algorithms implemented in PyTorch
(Section 3).2

• We prove that the VC dimension of multi-layer neural networks with LDR weight matrices,
which encompasses a broad class of previously explored approaches including the low-rank
and Toeplitz-like classes, is quasi-linear in the number of parameters (Section 4).

• We empirically demonstrate that our construction improves downstream quality when
compressing weight layers in fully-connected, convolutional, and recurrent neural networks
compared to previous compression approaches, and on some tasks can even outperform
general unstructured layers (Section 5).

2 Background: displacement rank

The generic term structured matrix refers to an m × n matrix that can be represented in much
fewer than mn parameters, and admits fast operations such as matrix-vector multiplication. The
displacement rank approach represents a structured matrix M ∈ Rm×n through displacement
operators (A ∈ Rm×m,B ∈ Rn×n) defining a linear map ∇A,B : M ↦→ AM−MB on matrices,
and a residual R, so that if

AM−MB = R (1)
then M can be manipulated solely through the compressed representation (A,B,R). We assume
that A and B have disjoint eigenvalues, which guarantees that M can be recovered from A,B,R
(c.f. Theorem 4.3.2, Pan [40]). The rank of R (also denoted∇A,B[M]) is called the displacement
rank of M w.r.t. (A,B).3

2Our code is available at https://github.com/HazyResearch/structured-nets.
3Throughout this paper, we use square matrices for simplicity, but LDR is well-defined for rectangular.
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The displacement approach was originally introduced to describe the Toeplitz-like matrices, which
are not perfectly Toeplitz but still have shift-invariant structure [27]. These matrices have LDR
with respect to shift/cycle operators. A standard formulation uses A = Z1,B = Z−1, where

Zf =

[
01×(n−1) f
In−1 0(n−1)×1

]
denotes the matrix with 1 on the subdiagonal and f in the top-

right corner. The Toeplitz-like matrices have previously been applied in deep learning and kernel
approximation, and in several cases have performed significantly better than competing compressed
approaches [10, 34, 45]. Figure 1 illustrates the displacement (1) for a Toeplitz matrix, showing how
the shift invariant structure of the matrix leads to a residual of rank at most 2.
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Figure 1: Displacement equation for a Toeplitz matrix with respect to shift operators Z1,Z−1.

A few distinct classes of useful matrices are known to satisfy a displacement property: the classic
types are the Toeplitz-, Hankel-, Vandermonde-, and Cauchy-like matrices (Appendix C, Table 5),
which are ubiquitous in other disciplines [40]. These classes have fixed operators consisting of
diagonal or shift matrices, and LDR properties have traditionally been analyzed in detail only for
these special cases. Nonetheless, a few elegant properties hold for generic operators, stating that
certain combinations of (and operations on) LDR matrices preserve low displacement rank. We
call these closure properties, and introduce an additional block closure property that is related to
convolutional filter channels (Section 5.2).

We use the notation Dr
A,B to refer to the matrices of displacement rank ≤ r with respect to (A,B).

Proposition 1. LDR matrices are closed under the following operations:

(a) Transpose/Inverse If M ∈ Dr
A,B, then MT ∈ Dr

BT ,AT and M−1 ∈ Dr
B,A.

(b) Sum If M ∈ Dr
A,B and N ∈ Ds

A,B, then M+N ∈ Dr+s
A,B.

(c) Product If M ∈ Dr
A,B and N ∈ Ds

B,C, then MN ∈ Dr+s
A,C.

(d) Block Let Mij satisfy Mij ∈ Dr
Ai,Bj

for i = 1 . . . k, j = 1 . . . ℓ. Then the k × ℓ block
matrix (Mij)ij has displacement rank rkℓ.

Proposition 1 is proved in Appendix C.

3 Learning displacement operators

We consider two classes of new displacement operators. These operators are fixed to be matrices with
particular sparsity patterns, where the entries are treated as learnable parameters.

The first operator class consists of subdiagonal (plus corner) matrices: Ai+1,i, along with the corner
A0,n−1, are the only possible non-zero entries. As Zf is a special case matching this sparsity pattern,
this class is the most direct generalization of Toeplitz-like matrices with learnable operators.

The second class of operators are tridiagonal (plus corner) matrices: with the exception of the
outer corners A0,n−1 and An−1,0, Ai,j can only be non-zero if |i − j| ≤ 1. Figure 2 shows the
displacement operators for the Toeplitz-like class and our more general operators. We henceforth let
LDR-SD and LDR-TD denote the classes of matrices with low displacement rank with respect to
subdiagonal and tridiagonal operators, respectively. Note that LDR-TD contains LDR-SD.

Expressiveness The matrices we introduce can model rich structure and subsume many types of
linear transformations used in machine learning. We list some of the structured matrices that have
LDR with respect to tridiagonal displacement operators:

Proposition 2. The LDR-TD matrices contain:
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Figure 2: The Zf operator (left), and our learnable subdiagonal (center) and tridiagonal (right) operators,
corresponding to our proposed LDR-SD and LDR-TD classes.

(a) Toeplitz-like matrices, which themselves include many Toeplitz and circulant variants
(including standard convolutional filters - see Section 5.2 and Appendix C, Corollary 1) [8,
17, 45].

(b) low-rank matrices.

(c) the other classic displacement structures: Hankel-like, Vandermonde-like, and Cauchy-like
matrices.

(d) orthogonal polynomial transforms, including the Discrete Fourier and Cosine Transforms.

(e) combinations and derivatives of these classes via the closure properties (Proposition 1),
including structured classes previously used in machine learning such as ACDC [37] and
block circulant layers [17].

These reductions are stated more formally and proved in Appendix C.1. We also include a diagram of
the structured matrix classes included by the proposed LDR-TD class in Figure 5 in Appendix C.1.

Our parameterization Given the parameters A,B,R, the operation that must ultimately be
performed is matrix-vector multiplication by M = ∇−1

A,B[R]. Several schemes for explicitly re-
constructing M from its displacement parameters are known for specific cases [41, 44], but do not
always apply to our general operators. Instead, we use A,B,R to implicitly construct a slightly
different matrix with at most double the displacement rank, which is simpler to work with.

Proposition 3. Let K(A,v) denote the n× n Krylov matrix, defined to have i-th column Aiv. For
any vectors g1, . . . ,gr,h1, . . . ,hr ∈ Rn, then the matrix

r∑

i=1

K(A,gi)K(BT ,hi)
T (2)

has displacement rank at most 2r with respect to A−1,B.

Thus our representation stores the parameters A,B,G,H, where A,B are either subdiagonal
or tridiagonal operators (containing n or 3n parameters), and G,H ∈ Rn×r. These parameters
implicitly define the matrix (2), which is the LDR weight layer we use.

Algorithms for LDR-SD Generic and near-linear time algorithms for matrix-vector multiplication
by LDR matrices with even more general operators, including both the LDR-TD and LDR-SD classes,
were recently shown to exist [14]. However, complete algorithms were not provided, as they relied on
theoretical results such as the transposition principle [6] that only imply the existence of algorithms.
Additionally, the recursive polynomial-based algorithms are difficult to implement efficiently. For
LDR-SD, we provide explicit and complete near-linear time algorithms for multiplication by (2),
as well as substantially simplify them to be useful in practical settings and implementable with
standard library operations. We empirically compare the efficiency of our implementation and
unstructured matrix-vector multiplication in Figure 8 and Table 14 in Appendix E, showing that
LDR-SD accelerates inference by 3.34-46.06x for n ≥ 4096. We also show results for the low-
rank and Toeplitz-like classes, which have a lower computational cost. For LDR-TD, we explicitly
construct the K(A,gi) and K(BT ,hi) matrices for i = 1, ..., r from Proposition 3 and then apply
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the standard O(n2) matrix-vector multiplication algorithm. Efficient implementations of near-linear
time algorithms for LDR-TD are an interesting area of future work.

Theorem 1. Define the simultaneous computation of k Fast Fourier Transforms (FFT), each with
size m, to be a batched FFT with total size km.

Consider any subdiagonal matrix A ∈ Rn×n and vectors g,h ∈ Rn. Then K(A,g)T or K(A,g)
can be multiplied by any vector x by computing 8 log2(n) batched FFTs, each of total size 2n. The
total number of computations is O(n log2 n).

These algorithms are also automatically differentiable, which we use to compute the gradients when
learning. More complete descriptions of these algorithms are presented in Appendix C.

4 Theoretical properties of structured matrices

Complexity of LDR neural networks The matrices we use (2) are unusual in that the parameters
interact multiplicatively (namely in Ai,Bi) to implicitly define the actual layer. In contrast, fully-
connected layers are linear and other structured layers, such as Fastfood and ACDC [31, 37, 49], are
constant degree in their parameters. However, we can prove that this does not significantly change
the learnability of our classes:

Theorem 2. Let F denote the class of neural networks with L LDR layers, W total parameters,
and piecewise linear activations. Let signF denote the corresponding classification functions, i.e.
{x ↦→ sign f(x) : f ∈ F}. The VC dimension of this class is

VCdim(signF) = O(LW logW ).

Theorem 2 matches the standard bound for unconstrained weight matrices [4, 24]. This immediately
implies a standard PAC-learnable guarantee [47]. Theorem 2 holds for even more general activations
and matrices that for example include the broad classes of [14]. The proof is in Appendix D, and we
empirically validate the generalization and sample complexity properties of our class in Section 5.3.

Displacement rank and equivariance We observe that displacement rank is related to a line of
work outside the resource-constrained learning community, specifically on building equivariant
(also called covariant in some contexts [5, 35]) feature representations that transform in predictable
ways when the input is transformed. An equivariant feature map Φ satisfies

Φ(B(x)) = A(Φ(x)) (3)

for transformations A,B (invariance is the special case when A is the identity) [16, 33, 43]. This
means that perturbing the input by a transformation B before passing through the map Φ is equivalent
to first finding the features Φ then transforming by A.

Intuitively, LDR matrices are a suitable choice for modeling approximately equivariant linear maps,
since the residual AΦ−ΦB of (3) has low complexity. Furthermore, approximately equivariant maps
should retain the compositional properties of equivariance, which LDR satisfies via Proposition 1. For
example, Proposition 1(c) formalizes the notion that the composition of two approximately equivariant
maps is still approximately equivariant. Using this intuition, the displacement representation (1) of a
matrix decomposes into two parts: the operators A,B define transformations to which the model is
approximately equivariant, and the low complexity residual R controls standard model capacity.

Equivariance has been used in several ways in the context of machine learning. One formulation,
used for example to model ego-motions, supposes that (3) holds only approximately, and uses a fixed
transformation B along with data for (3) to learn an appropriate A [1, 33]. Another line of work uses
the representation theory formalization of equivariant maps [12, 28]. We describe this formulation in
more detail and show how LDR satisfies this definition as well in Appendix C.3, Proposition 7. In
contrast to previous settings, which fix one or both of A,B, our formulation stipulates that Φ can be
uniquely determined from A, B, and learns the latter as part of an end-to-end model. In Section 5.4
we include a visual example of latent structure that our displacement operators learn, where they
recover centering information about objects from a 2D image dataset.
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5 Empirical evaluation

Overview In Section 5.1 we consider a standard setting of compressing a single hidden layer (SHL)
neural network and the fully-connected (FC) layer of a CNN for image classification tasks. Following
previous work [7, 45], we test on two challenging MNIST variants [30], and include two additional
datasets with more realistic objects (CIFAR-10 [29] and NORB [32]). Since SHL models take a
single channel as input, we converted CIFAR-10 to grayscale for this task. Our classes and the
structured baselines are tested across different parameter budgets in order to show tradeoffs between
compression and accuracy. As shown in Table 1, in the SHL model, our methods consistently have
higher test accuracy than baselines for compressed training and inference, by 3.14, 2.70, 3.55, and 3.37
accuracy points on MNIST-bg-rot, MNIST-noise, CIFAR-10, and NORB respectively. In the CNN
model, as shown in Table 1 in Appendix E, we found improvements of 5.56, 0.95, and 1.98 accuracy
points over baselines on MNIST-bg-rot, MNIST-noise, and NORB respectively. Additionally, to
explore whether learning the displacement operators can facilitate adaptation to other domains, we
replace the input-hidden weights in an LSTM for a language modeling task, and show improvements
of 0.81-30.47 perplexity points compared to baselines at several parameter budgets.

In addition to experiments on replacing fully-connected layers, in Section 5.2 we also replace the
convolutional layer of a simple CNN while preserving performance within 1.05 accuracy points on
CIFAR-10. In Section 5.3, we consider the effect of a higher parameter budget. By increasing the rank
to just 16, the LDR-SD class meets or exceeds the accuracy of the unstructured FC layer in all datasets
we tested on, for both SHL and CNN.4 Appendix F includes more experimental details and protocols.
Our PyTorch code is publicly available at github.com/HazyResearch/structured-nets.

5.1 Compressing fully-connected layers

Image classification Sindhwani et al. [45] showed that for a fixed parameter budget, the Toeplitz-
like class significantly outperforms several other compression approaches, including Random Edge
Removal [11], Low Rank Decomposition [15], Dark Knowledge [25], HashedNets [7], and Hashed-
Nets with Dark Knowledge. Following previous experimental settings [7, 45], Table 1 compares our
proposed classes to several baselines using dense structured matrices to compress the hidden layer
of a single hidden layer neural network. In addition to Toeplitz-like, we implement and compare to
other classic LDR types, Hankel-like and Vandermonde-like, which were previously indicated as an
unexplored possibility [45, 50]. We also show results when compressing the FC layer of a 7-layer
CNN based on LeNet in Appendix E, Table 7. In Appendix E, we show comparisons to additional
baselines at multiple budgets, including network pruning [23] and a baseline used in [7], in which the
number of hidden units is adjusted to meet the parameter budget.

At rank one (the most compressed setting), our classes with learned operators achieve higher accuracy
than the fixed operator classes, and on the MNIST-bg-rot, MNIST-noise, and NORB datasets even
improve on FC layers of the same dimensions, by 1.73, 13.30, and 2.92 accuracy points respectively
on the SHL task, as shown in Table 1. On the CNN task, our classes improve upon unstructured
fully-connected layers by 0.85 and 2.25 accuracy points on the MNIST-bg-rot and MNIST-noise
datasets (shown in Table 7 in Appendix E). As noted above, at higher ranks our classes meet or
improve upon the accuracy of FC layers on all datasets in both the SHL and CNN architectures.

Additionally, in Figure 3 we evaluate the performance of LDR-SD at higher ranks. Note that the
ratio of parameters between LDR-SD and the Toeplitz-like or low-rank is r+1

r , which becomes
negligible at higher ranks. Figure 3 shows that at just rank 16, the LDR-SD class meets or exceeds
the performance of the FC layer on all four datasets, by 5.87, 15.05, 0.74, and 6.86 accuracy points
on MNIST-bg-rot, MNIST-noise, CIFAR-10, and NORB respectively, while still maintaining at least
20x fewer parameters.

Of particular note is the poor performance of low-rank matrices. As mentioned in Section 2, every
fixed-operator class has the same parameterization (a low-rank matrix). We hypothesize that the
main contribution to their marked performance difference is the effect of the learned displacement
operator modeling latent invariances in the data, and that the improvement in the displacement

4In addition to the results reported in Table 1, Figure 3 and Table 7 in Appendix E, we also found that at rank
16 the LDR-SD class on the CNN architecture achieved test accuracies of 68.48% and 75.45% on CIFAR-10
and NORB respectively.
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Table 1: Test accuracy when replacing the hidden layer with structured classes. Where applicable, rank (r) is in
parentheses, and the number of parameters in the architecture is in italics below each method. Comparisons to
previously unexplored classic LDR types as well as additional structured baselines are included, with the ranks
adjusted to match the parameter count of LDR-TD where possible. The Fastfood [49] and Circulant [8] methods
do not have rank parameters, and the parameter count for these methods cannot be exactly controlled. Additional
results when replacing the FC layer of a CNN are in Appendix E. Details for all experiments are in Appendix F.

Method MNIST-bg-rot MNIST-noise CIFAR-10 NORB
Unstructured 44.08 65.15 46.03 59.83

622506 622506 1058826 1054726
LDR-TD (r = 1) 45.81 78.45 45.33 62.75

14122 14122 18442 14342

Toeplitz-like [45] (r = 4) 42.67 75.75 41.78 59.38
14122 14122 18442 14342

Hankel-like (r = 4) 42.23 73.65 41.40 60.09
14122 14122 18442 14342

Vandermonde-like (r = 4) 37.14 59.80 33.93 48.98
14122 14122 18442 14342

Low-rank [15] (r = 4) 35.67 52.25 32.28 43.66
14122 14122 18442 14342

Fastfood [49] 38.13 63.55 39.64 59.02
10202 10202 13322 9222

Circulant [8] 34.46 65.35 34.28 46.45
8634 8634 11274 7174
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Figure 3: Test accuracy vs. rank for unstructured, LDR-SD, Toeplitz-like, low-rank classes. On each dataset,
LDR-SD meets or exceeds the accuracy of the unstructured FC baseline at higher ranks. At rank 16, the
compression ratio of an LDR-SD layer compared to the unstructured layer ranges from 23 to 30. Shaded regions
represent two standard deviations from the mean, computed over five trials with randomly initialized weights.

rank classes—from low-rank to Toeplitz-like to our learned operators—comes from more accurate
representations of these invariances. As shown in Figure 3, broadening the operator class (from
Toeplitz-like at r = 1 to LDR-SD at r = 1) is consistently a more effective use of parameters than
increasing the displacement rank (from Toeplitz-like at r = 1 to r = 2). Note that LDR-SD (r = 1)
and Toeplitz-like (r = 2) have the same parameter count.

For the rest of our experiments outside Section 5.1 we use the algorithms in Appendix C specifically
for LDR-SD matrices, and focus on further evaluation of this class on more expensive models.

Language modeling Here, we replace the input-hidden weights in a single layer long short-term
memory network (LSTM) for a language modeling task. We evaluate on the WikiText-2 dataset,
consisting of 2M training tokens and a vocabulary size of 33K [36]. We compare to Toeplitz-like
and low-rank baselines, both previously investigated for compressing recurrent nets [34]. As shown
in Table 2, LDR-SD improves upon the baselines for each budget tested. Though our class does
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not outperform the unstructured model, we did find that it achieves a significantly lower perplexity
than the fixed Toeplitz-like class (by 19.94-42.92 perplexity points), suggesting that learning the
displacement operator can help adapt to different domains.

Table 2: Test perplexity when replacing input-hidden matrices of an LSTM with structured classes on WikiText-2.
An unconstrained layer, with 65536 parameters, has perplexity 117.74. Parameter budgets correspond to ranks
1,2,4,8,16,24 for LDR-SD. Lower is better.

Num. Parameters LDR-SD Toeplitz-like Low-rank
2048 166.97 186.91 205.72
3072 154.51 177.60 179.46
5120 141.91 178.07 172.38
9216 143.60 186.52 144.41
17408 132.43 162.58 135.65
25600 129.46 155.73 133.37

5.2 Replacing convolutional layers

Convolutional layers of CNNs are a prominent example of equivariant feature maps.5 It has been noted
that convolutions are a subcase of Toeplitz-like matrices with a particular sparsity pattern6 [8, 45].
As channels are simply block matrices7, the block closure property implies that multi-channel
convolutional filters are simply a Toeplitz-like matrix of higher rank (see Appendix C, Corollary 1).
In light of the interpretation of LDR of an approximately equivariant linear map (as discussed in
Section 4), we investigate whether replacing convolutional layers with more general representations
can recover similar performance, without needing the hand-crafted sparsity pattern.

Briefly, we test the simplest multi-channel CNN model on the CIFAR-10 dataset, consisting of one
layer of convolutional channels (3 in/out channels), followed by a FC layer, followed by the softmax
layer. The final accuracies are listed in Table 3. The most striking result is for the simple architecture
consisting of two layers of a single structured matrix. This comes within 1.05 accuracy points of
the highly specialized architecture consisting of convolutional channels + pooling + FC layer, while
using fewer layers, hidden units, and parameters. The full details are in Appendix F.

Table 3: Replacing a five-layer CNN consisting of convolutional channels, max pooling, and FC layers with two
generic LDR matrices results in only slight test accuracy decrease while containing fewer layers, hidden units,
and parameters. Rank (r) is in parentheses.

First hidden layer(s) Last hidden layer Hidden units Parameters Test Acc.
3 Convolutional Channels (CC) FC 3072, 512 1573089 54.59
3CC + Max Pool FC 3072, 768, 512 393441 55.14
4CC + Max Pool FC 4096, 1024, 512 524588 60.05
Toeplitz-like (r = 16) channels Toeplitz-like (r = 16) 3072, 512 393216 57.29
LDR-SD (r = 16) channels LDR-SD (r = 16) 3072, 512 417792 59.36
Toeplitz-like (r = 48) matrix Toeplitz-like (r = 16) 3072, 512 393216 55.29
LDR-SD (r = 48) matrix LDR-SD (r = 16) 3072, 512 405504 59.00

5.3 Generalization and sample complexity

Theorem 2 states that the theoretical sample complexity of neural networks with structured weight
matrices scales almost linearly in the total number of parameters, matching the results for networks
with fully-connected layers [4, 24]. As LDR matrices have far fewer parameters, the VC dimension

5Convolutions are designed to be shift equivariant, i.e. shifting the input is equivalent to shifting the output.
6E.g. a 3× 3 convolutional filter on an n× n matrix has a Toeplitz weight matrix supported on diagonals

−1, 0, 1, n− 1, n, n+ 1, 2n− 1, . . . .
7A layer consisting of k in-channels and ℓ out-channels, each of which is connected by a weight matrix of

class C, is the same as a k × ℓ block matrix.
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Figure 4: The learned weight matrices (a,b) of models trained on MNIST-bg-rot. Unlike the Toeplitz-like matrix,
the LDR-SD matrix displays grid-like periodicity corresponding to the 2D input. Figure (c) shows the values
of the subdiagonal of B, reshaped as an image. The size and location of the circle roughly corresponds to the
location of objects of interest in the 2D inputs. A similar centering phenomenon was found on the NORB dataset,
shown in Figure 6 in Appendix E.

bound for LDR networks are correspondingly lower than that of general unstructured networks.
Though the VC dimension bounds are sufficient but not necessary for learnability, one might still
expect to be able to learn over compressed networks with fewer samples than over unstructured
networks. We empirically investigate this result using the same experimental setting as Table 1
and Figure 3. As shown in Table 12 (Appendix E), the structured classes consistently have lower
generalization error (measured by the difference between training and test error) than the unstructured
baseline.

Reducing sample complexity We investigate whether LDR models with learned displacement
operators require fewer samples to achieve the same test error, compared to unstructured weights, in
both the single hidden layer and CNN architectures. Tables 10 and 11 in Appendix E show our results.
In the single hidden layer architecture, when using only 25% of the training data the LDR-TD class
exceeds the performance of an unstructured model trained on the full MNIST-noise dataset. On the
CNN model, only 50% of the training data is sufficient for the LDR-TD to exceed the performance of
an unstructured layer trained on the full dataset.

5.4 Visualizing learned weights

Finally, we examine the actual structures that our models learn. Figure 4(a,b) shows the heat map of
the weight matrix W ∈ R784×784 for the Toeplitz-like and LDR-SD classes, trained on MNIST-bg-rot
with a single hidden layer model. As is convention, the input is flattened to a vector in R784. The
Toeplitz-like class is unable to determine that the input is actually a 28× 28 image instead of a vector.
In contrast, LDR-SD class is able to pick up regularity in the input, as the weight matrix displays
grid-like periodicity of size 28.

Figure 4(c) reveals why the weight matrix displays this pattern. The equivariance interpretation
(Section 4) predicts that B should encode a meaningful transformation of the inputs. The entries of
the learned subdiagonal are in fact recovering a latent invariant of the 2D domain: when visualized as
an image, the pixel intensities correspond to how the inputs are centered in the dataset (Figure 4(d)).
Figure 6 in Appendix E shows a similar figure for the NORB dataset, which has smaller objects, and
we found that the subdiagonal learns a correspondingly smaller circle.

6 Conclusion

We generalize the class of low displacement rank matrices explored in machine learning by consider-
ing classes of LDR matrices with displacement operators that can be learned from data. We show
these matrices can improve performance on downstream tasks compared to compression baselines
and, on some tasks, general unstructured weight layers. We hope this work inspires additional ways
of using structure to achieve both more compact and higher quality representations, especially for
deep learning models, which are commonly acknowledged to be overparameterized.
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A Symbols and abbreviations

Table 4: Symbols and abbreviations used in this paper.
Symbol Used For

LDR low displacement rank
LDR-SD matrices with low displacement rank with respect to subdiagonal operators
LDR-TD matrices with low displacement rank with respect to tridiagonal operators
(A,B) displacement operators
∇A,B[M] Sylvester displacement, AM−MB

r (displacement) rank
(G,H) parameters which define the rank r residual matrix GHT , where G,H ∈ Rn×r

Zf unit-f-circulant matrix, defined as Zf = [e2, e3, ..., en, fe1]
K(A,v) Krylov matrix, with ith column Aiv
Dr

A,B matrices of displacement rank ≤ r with respect to (A,B)
Φ feature map

CC convolutional channels
FC fully-connected

B Related work

Our study of the potential for structured matrices for compressing deep learning pipelines was
motivated by exciting work along these lines from Sindhwani et al. [45], the first to suggest the use
of low displacement rank (LDR) matrices in deep learning. They specifically explored applications
of the Toeplitz-like class, and empirically show that this class is competitive against many other
baselines for compressing neural networks on image and speech domains. Toeplitz-like matrices
were similarly found to be effective at compressing RNN and LSTM architectures on a voice search
task [34]. Another special case of LDR matrices are the circulant (or block-circulant) matrices, which
have also been used for compressing CNNs [8]; more recently, these have also been further developed
and shown to achieve state-of-the-art results on FPGA and ASIC platforms [17]. Earlier works on
compressing deep learning pipelines investigated the use of low-rank matrices [15, 42]—perhaps the
most canonical type of dense structured matrix—which are also encompassed by our framework,
as shown in Proposition 2. Outside of deep learning, Choromanski and Sindhwani [10] examined a
structured matrix class that includes Toeplitz-like, circulant, and Hankel matrices (which are all LDR
matrices) in the context of kernel approximation.

On the theoretical side, Zhao et al. [50] study properties of neural networks with LDR weight matrices,
proving results including a universal approximation property and error bounds. However, they retain
the standard paradigm of fixing the displacement operators and varying the low-rank portion. Another
natural theoretical question that arises with these models is whether the resulting hypothesis class is
still efficiently learnable, especially when learning the structured class (as opposed to these previous
fixed classes). Recently, Oymak [38] proved a Rademacher complexity bound for one layer neural
networks with low-rank weight matrices. To the best of our knowledge, Theorem 2 provides the
first sample complexity bounds for neural networks with a broad class of structured weight matrices
including low-rank, our LDR classes, and other general structured matrices [14].

In Section 3 we suggest that the LDR representation enforces a natural notion of approximate equiv-
ariance and satisfies closure properties that one would expect of equivariant representations. The
study of equivariant feature maps is of broad interest for constructing more effective representations
when known symmetries exist in underlying data. Equivariant linear maps have long been used in
algebraic signal processing to derive efficient transform algorithms [18, 19]. The fact that convo-
lutional networks induce equivariant representations, and the importance of this effect on sample
complexity and generalization, has been well-analyzed [2, 12, 21, 46]. Building upon the observation
that convolutional filters are simply linear maps constructed to be translation equivariant8, exciting
recent progress has been made on crafting representations invariant to more complex symmetries such
as the spherical rotation group [13] and egomotions [1]. Generally, however, underlying assumptions

8Shifting the input to a convolutional feature map is the same as shifting the output.
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are made about the domain and invariances present in order to construct feature maps for each
application. A few works have explored the possibility of learning invariances automatically from
data, and design deep architectures that are in principle capable of modeling and learning more
general symmetries [20, 26, 39].

C Properties of displacement rank

Displacement rank has traditionally been used to describe the Toeplitz-like, Hankel-like,
Vandermonde-like, and Cauchy-like matrices, which are ubiquitous in disciplines such as engi-
neering, coding theory, and computer algebra. Their associated displacement representations are
shown in Table 5.

Table 5: Traditional classes of structured matrices analyzed with displacement rank. In the Vandermonde and
Cauchy cases, the displacement operators are parameterized by v ∈ Rn and s, t ∈ Rn respectively.

Structured Matrix M A B Displacement Rank r
Toeplitz Z1 Z−1 ≤ 2
Hankel Z1 ZT

0 ≤ 2
Vandermonde diag(v) Z0 ≤ 1
Cauchy diag(s) diag(t) ≤ 1

Proof of Proposition 1. The following identities are easily verified:

Transpose
∇BT ,ATMT = − (∇A,BM)

T

Inverse
∇B,AM−1 = −M−1 (∇A,BM)M−1

Sum
∇A,B(M+N) = ∇A,BM+∇A,BN

Product
∇A,CMN = (∇A,BM)N+M (∇B,CN)

Block The remainder
diag(A1, . . . ,Ak)M−Mdiag(B1, . . . ,Bℓ)

is the block matrix
(∇Ai,Bj

Mij)1≤i≤k,1≤j≤ℓ.

This is the sum of kℓ matrices of rank r and thus has rank rkℓ.

Corollary 1. A k × ℓ block matrix M, where each block is a Toeplitz-like matrix of displacement
rank r, is Toeplitz-like with displacement rank rkℓ+ 2k + 2ℓ.

Proof. Apply Proposition (d) where each Ak,Bk has the form Zf . Let A = diag(A1, . . . ,Ak) and
B = diag(B1, . . . ,Bℓ). Note that A and Z1 (of the same size as A) differ only in 2k entries, and
similarly B and Z−1 differ in 2ℓ entries. Since an s-sparse matrix also has rank at most s,

Z1M−MZ−1 = AM−MB+ (Z1 −A)M−M(Z−1 −B)

has rank at most rkℓ+ 2k + 2ℓ.

Proof of Proposition 3. First consider the rank one case, R = ghT . It is easy to check that
∇A−1,ZTK(A,g) will only be non-empty in the first column, hence K(A,g) ∈ D1

A−1,ZT . Similarly,
K(BT ,h) ∈ D1

BT ,Z and Proposition 1(a) implies K(BT ,h)T ∈ D1
ZT ,B. Then Theorem 1(c) implies

that K(A,g)K(B,h)T ∈ D2
A,B. The rank r case follows directly from Theorem 1(b).
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C.1 Expressiveness

Expanding on the claim in Section 3, we formally show that these structured matrices are contained
in the tridiagonal (plus corners) LDR class. This includes several types previously used in similar
works.

A storage Av compute

LDR-TD

Toeplitz-like

Circulant

Convolutional filters

Low-rank Orthogonal polynomial
transforms

O(nr) O(nr) O(n) O(n log2 n)

O(n) O(n log n)

O(n) O(n log n)

O(nr) O(nr log n)

O(nr) O(nr log2 n)

Figure 5: Our proposed LDR-TD structured matrix class contains a number of other classes including Toeplitz-
like [45] (and other classic displacement types, such as Hankel-like, Vandermonde-like, and Cauchy-like),
low-rank [15], circulant [8], standard convolutional filters, and orthogonal polynomial transforms, including
the Discrete Fourier and Cosine Transforms. Captions for each class show storage cost and operation count for
matrix-vector multiplication.

Classic displacement rank The Toeplitz-like, Hankel-like, Vandermonde-like, and Cauchy-like
matrices are defined as having LDR with respect to A,B ∈ {Zf ,Z

T
f ,D} where D is the set of

diagonal matrices [40]. (For example, [45] defines the Toeplitz-like matrices as (A,B) = (Z1,Z−1).)
All of these operator choices are only non-zero along the three main diagonals or opposite corners,
and hence these classic displacement types belong to the LDR-TD class.

Low-rank A rank r matrix R trivially has displacement rank r with respect to (A,B) = (I,0).
It also has displacement rank r with respect to (A,B) = (Z1,0), since Z1 is full rank (it is a
permutation matrix) and so rank(Z1R) = rank(R) = r. Thus low-rank matrices are contained in
both the LDR-TD and LDR-SD classes.

Orthogonal polynomial transforms The polynomial transform matrix M with respect to poly-
nomials (p0(X), . . . , pm−1(X)) and nodes (λ0, . . . , λn−1) is defined by Mij = pi(λj). When the
pi(X) are a family of orthogonal polynomials, it is called an orthogonal polynomial transform.
Proposition 4. Orthogonal polynomial transforms have displacement rank 1 with respect to tridiag-
onal operators.

Proof. Every orthogonal polynomial family satisfies a three-term recurrence
pi+1(X) = (aiX + bi)pi(X) + cipi−1(X) (4)
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where ai > 0 [9]. Let M be an orthogonal polynomial transform with respect to polynomials
(pi(X))0≤i<m and nodes (λj)0≤j<n. Define the tridiagonal and diagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− b0
a0

1
a0

0 . . . 0 0

− c1
a1
− b1

a1

1
a1

. . . 0 0

0 − c1
a1
− b1

a1
. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . − bm−2

am−2

1
am−2

0 0 0 . . . − cm−1

am−1
− bm−1

am−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B = diag(λ0, . . . , λn−1).

For any i ∈ {0, . . . ,m− 2} and any j, consider entry ij of AM−MB. This is

1

ai
[−cipi−1(λj)− bipi(λj) + pi+1(λj)− λjpi(λj)]

which is 0 by plugging λj into (4).

Thus ∇A,BM can only non-zero in the last row, so M ∈ D1
A,B.

Fourier-like transforms Orthogonal polynomial transforms include many special cases. We single
out the Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT) for their ubiquity.

The N ×N DFT and DCT (type II) are defined as matrix multiplication by the matrices

F =
(
e−2π ij

N

)
ij

C =
(
cos
[ π
N

i(j + 1/2)
])

ij

respectively.

The former is a special type of Vandermonde matrix, which were already shown to be in LDR-TD.
Also note that Vandermonde matrices (λi

j)ij are themselves orthogonal polynomial transforms with
pi(X) = Xi.

The latter can be written as (
Ti

(
cos

[
π

N
(j +

1

2
)

]))

ij

,

where Ti are the Chebyshev polynomials (of the first kind) defined such that

Tn(X) = cos(n arccosx).

Thus this is an orthogonal polynomial transform with respect to the Chebyshev polynomials.

Other constructions From these basic building blocks, interesting constructions belonging to
LDR-TD can be found via the closure properties. For example, several types of structured layers
inspired by convolutions, including Toeplitz [45], circulant [8] and block-circulant [17] matrices, are
special instances of Toeplitz-like matrices. We also point out a more sophisticated layer [37] in the
tridiagonal LDR class, which requires more deliberate use of Proposition 1 to show.
Proposition 5. The ACDC−1 layer, where A,D are diagonal matrices and C is the Discrete
Cosine Transform [37], has displacement rank 2 with respect to tridiagonal operators.

Proof. Let T,Λ be the tridiagonal and diagonal matrix such that C ∈ D1
T,Λ. Define S = ATA−1,

which is also tridiagonal. Note that A ∈ D0
S,T by construction. Also note that D ∈ D0

Λ,Λ since Λ is
diagonal. An application of the inverse closure rule yields C ∈ D1

Λ,T. Finally, the product closure
property implies that

ACDC−1 ∈ D2
S,T.
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C.2 Algorithm derivation and details

De Sa et al. recently showed that a very general class of LDR matrices have asymptotically fast
matrix-vector multiplication algorithms [14]. However, parts of the argument are left to existential
results. Building upon De Sa et al. [14], we derive a simplified and self-contained algorithm for
multiplication by LDR matrices with subdiagonal operators.

Since these matrices can be represented by the Krylov product formula (2), it suffices to show
multiplication algorithms separately for matrix-vector multiplication by K(A,v)T and K(A,v).

Krylov transpose multiplication Let A ∈ Rn×n be a subdiagonal matrix, i.e. Ai+1,i are the
only possible non-zero entries. Let u,v ∈ Rn, we wish to compute the product K(A,v)Tu. For
simplicity assume n is a power of 2.

Following [14], the vector

uTK(A,v) =
[
uv uAv . . . uAn−1v

]

is the coefficient vector of the polynomial in X

uv + uAvX + · · ·+ uAn−1vXn−1

=

∞∑

i=0

uAiXiv

= u(I−AX)−1v,

where we use the observation that An = 0.

By partitioning A into n/2 × n/2 blocks, it has the form
[

A0 0
ae1e

T
n/2 A1

]
, where A0,A1 are

subdiagonal matrices of half the size, a is a scalar, and ei are basis vectors. Let also u0,u1 ∈ Rn/2,
v0,v1 ∈ Rn/2 denote the first and second halves of u,v.

By block matrix inversion for triangular matrices
[
A 0
C B

]−1

=

[
A−1 0

−B−1CA−1 B−1

]
, this can be

written as

uT (I−AX)−1v =
[
uT
0 uT

1

] [ (I−A0X)−1 0
−(I−A1X)−1(−ae1eTn/2X)(I−A0X)−1 (I−A1X)−1

] [
v0

v1

]

= uT
0 (I−A0X)−1v0 + uT

1 (I−A1X)−1v1 + aX
(
uT
1 (I−A1X)−1e1

) (
eTn/2(I−A0X)−1v0

)

Therefore uT (I−AX)−1v can be computed from

uT
0 (I−A0X)−1v0 uT

1 (I−A1X)−1v1

uT
1 (I−A1X)−1e1 eTn/2(I−A0X)−1v0

with an additional polynomial multiplication and 3 polynomial addition/subtractions.

A modification of this reduction shows that the 2 × 2 matrix of polynomials [u en]
T
(I −

AX)−1 [v e1] can be computed from

[u0 en]
T
(I−A0X)−1 [v0 e1] [u1 en]

T
(I−A1X)−1 [v1 e1]

with an additional constant number of polynomial multiplications and additions.

The complete recursive algorithm is provided in Algorithm 1, where subroutine R computes the above
matrix of polynomials. For convenience, Algorithm 1 uses Python indexing notation.

A polynomial multiplication of degree m in Step 8 can be computed as a convolution of size 2m. This
reduces to two Fast Fourier Transform (FFT) calls, an elementwise multiplication in the frequency
domain, and an inverse FFT. The total number of calls can be further reduced to 4 FFTs and 4 inverse
FFTs.
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Algorithm 1 Krylov Transpose (Recursive)

1: function KRYLOV_TRANSPOSE(A ∈ Rn×n,u,v ∈ Rn)
2: s← subdiagonal(A)
3: return R(s,u,v)
4: end function
5: function R(s ∈ Rn−1,u,v)
6: S0 ← R(s[0 : n/2− 1],u[0 : n/2],v[0 : n/2])
7: S1 ← R(s[n/2 : n− 1],u[n/2 : n],v[n/2 : n])

8: L← s[n/2− 1]X ·
[
S1[0, 1] · S0[1, 0] S1[0, 1] · S0[1, 1]
S1[1, 1] · S0[1, 0] S1[1, 1] · S0[1, 1]

]

9: return
[
L[0, 0] + S0[0, 0] + S1[0, 0] L[0, 1] + S0[0, 1]

L[1, 0] + S1[1, 0] L[1, 1]

]

10: end function

Algorithm 1 defines a recursion tree, and in practice we compute this breadth first bottom-up to avoid
recursive overhead. This also allows the FFT operations to be batched and computed in parallel. Thus
the d-th layer of the algorithm (starting from the leaves) performs n

2d
FFT computations of size 2d+1.

This completes the proof of Theorem 1.

We note several optimizations that are useful for implementation:

1. The polynomial eTn (I−AiX)−1e1 for i = 0, 1 are in fact monomials, which can be shown
inductively. To use the notation of Algorithm 1, S0[1, 1], S1[1, 1], and L[1, 1] are monomials.
Therefore the polynomial multiplication with S0[1, 1] and S1[1, 1] can be done directly by
coefficient-wise multiplication instead of using the FFT.

2. We don’t need the polynomials uT
0 (I−A0X)−1v0 and uT

1 (I−A1X)−1v1 separately, we
only need their sum. To use the notation of Algorithm 1, we don’t need S0[0, 0] and S1[0, 0]
separately, we only need their sum. In fact, by tracing the algorithm from the leaves of the
recursion tree to the root, we see that across the same depth d, only the sum of the terms
S0[0, 0] + S1[0, 0] of the n/2d subproblems is required, not the individual terms. Therefore,
when computing polynomial multiplication at depth d, we can perform the FFT of size 2d+1

and the pointwise multiplication, then sum across the n/2d problems before performing the
inverse FFT of size 2d+1.

Efficient batching with respect to input vector and rank. Optimization 2 is especially important
for efficient multiplication with respect to batched input u and higher rank v. Suppose that u
has size n × b and there are r vectors v1, . . . ,vr, and we wish to compute

∑r
i=1K(A,vi)

Tu.
Naively performing Algorithm 1 on each of the b inputs and each of the r vectors then summing the
results, takes O(brn log2 n) time. The bottleneck of the algorithm is the polynomial multiplication
S1[0, 1] · S0[1, 0]. At depth d, there are n/2d subproblems, and in each of those, S1[0, 1] consists of
b polynomials of degree at most 2d, while S0[1, 0] consists of r polynomials of degree at most 2d. If
we apply optimization 2, we first perform the FFT of size 2d+1 on these (b+ r)n/2d polynomials,
then pointwise multiplication in the frequency domain to get brn/2d vectors of size 2d+1 each. Next
we sum across the n/2d problems to get br vectors, before performing the inverse FFT of size 2d+1

to these br vectors. The summing step allows us to reduce the number of inverse FFTs from brn/2d

to br. The total running time over all depth d is then O((b + r)n log2 n + brn log n) instead of
O(brn log2 n).

Krylov multiplication De Sa et al. [14] do not provide explicit algorithms for the more complicated
problem of multiplication by K(A,v), instead justifying the existence of such an algorithm with the
transposition principle. Traditional proofs of the transposition principle use circuit based arguments
involving reversing arrows in the arithmetic circuit defining the algorithm’s computation graph [6].

Here we show an alternative simple way to implement the transpose algorithm using any automatic
differentiation (AD) implementation, which all modern deep learning frameworks include. AD
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states that for any computation, its derivative can be computed with only a constant factor more
operations [22].
Proposition 6 (Transposition Principle). If the matrix M ∈ Rn×n admits matrix-vector multipli-
cation by any vector in N operations, then MT admits matrix-vector multiplication in O(N + n)
operations.

Proof. Note that for any x and y, the scalar yTMx = y ·(Mx) can be computed in N+n operations.

The statement follows from applying reverse-mode AD to compute MTy = ∂
∂x (y

TMx).

Additionally, the algorithm can be optimized by choosing x = 0 to construct the forward graph.

To perform the optimization mentioned in Proposition 6, and avoid needing second-order derivatives
when computing backprop for gradient descent, we provide an explicit implementation of non-
transpose Krylov multiplicationK(A,v). This was found by using Proposition 6 to hand-differentiate
Algorithm 1.

Finally, we comment on multiplication by the LDR-TD class. Desa et al.[14] showed that these
matrices also have asymptotically efficient multiplication algorithms, of the order O(rn log3 n)
operations. However, these algorithms are even more complicated and involve operations such as
inverting matrices of polynomials in a modulus. Practical algorithms for this class similar to the one
we provide for LDR-SD matrices require more work to derive.

C.3 Displacement rank and equivariance

Here we discuss in more detail the connection between LDR and equivariance. One line of work [12,
28] has used the group representation theory formalization of equivariant maps, in which the model
is equivariant to a set of transformations which form a group G. Each transformation g ∈ G acts
on an input x via a corresponding linear map Tg. For example, elements of the rotation group in
two and three dimensions, SO(2) and SO(3), can be represented by 2D and 3D rotation matrices
respectively. Formally, a feature map Φ is equivariant if it satisfies

Φ(Tgx) = T ′
g(Φ(x)) (5)

for representations T, T ′ of G [12, 28]. This means that perturbing the input x by a transformation
g ∈ G before computing the map Φ is equivalent to first finding the features Φ and then applying
the transformation. Group equivariant convolutional neural networks (G-CNNs) are a particular
realization where Φ has a specific form G→ Rd, and T, T ′ are chosen in advance [12]. We use the
notation Φ to distinguish our setting, where the input x is finite dimensional and Φ is linear.
Proposition 7. If Φ has displacement rank 0 with respect to invertible A,B, then Φ is equivariant
as defined by (5).

Proof. Note that if AΦ = ΦB for invertible matrices A,B (i.e. if a matrix Φ has displacement
rank 0 with respect to A and B), then AiΦ = ΦBi also holds for i ∈ Z. Also note that the set of
powers of any invertible matrix forms a cyclic group, where the group operation is multiplication.
The statement follows directly from this fact, where the group G is Z, and the representations T and
T ′ of G correspond to the cyclic groups generated by A and B, respectively consisting of Ai and Bi

for all i ∈ Z.

More generally, a feature map Φ satisfying (5) for a set of generators S = {gi} is equivariant with
respect to the free group generated by S. Proposition 7 follows from the specific case of a single
generator, i.e. S = {1}.

D Bound on VC dimension and sample complexity

In this section we upper bound the VC dimension of a neural network where all the weight matrices
are LDR matrices and the activation functions are piecewise polynomials. In particular, the VC
dimension is almost linear in the number of parameters, which is much smaller than the VC dimension
of a network with unstructured layers. The bound on the VC dimension allows us to bound the sample
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complexity to learn an LDR network that performs well among LDR networks. This formalizes the
intuition that compressed parameterization reduces the complexity of the class.

Neural network model Consider a neural network architecture with W parameters, arranged in L
layers. Each layer l, has output dimension nl, where n0 is the dimension of the input data and the
output dimension is nL = 1. For l = 1, . . . , L, let il ∈ Rnl be the input to the l-th layer. The input to
the (l + 1)-th layer is exactly the output of the l-th layer. The activation functions ϕl are piecewise
polynomials with at most p+ 1 pieces and degree at most k ≥ 1. The input to the first layer is the
data i1 = x ∈ Rn1 , and the output of the last layer is a real number iL+1 ∈ R. The intermediate
layer computation has the form:

il+1 = ϕl(Mlil + bl) (applied elementwise), where Ml ∈ Rnl−1×nl , bl ∈ Rnl .

We assume the activation function of the final layer is the identity.

Each weight matrix Ml is defined through some set of parameters; for example, traditional uncon-
strained matrices are parametrized by their entries, and our formulation (2) is parametrized by the
entries of some operator matrices Al,Bl and low-rank matrix GlH

T
l . We collectively refer to all the

parameters of the neural network (including the biases bl) as θ ∈ RW , where W is the number of
parameters.

Bounding the polynomial degree The crux of the proof of the VC dimension bound is that the
entries of M ∈ Rn×m are polynomials in terms of the entries of its parameters (A, B, G, and H). of
total degree at most c1mc2 for universal constants c1, c2. This allows us to bound the total degree of
all of the layers and apply Warren’s lemma to bound the VC dimension.

We will first show this for the specific class of matrices that we use, where the matrix M is defined
through equation (2).
Lemma 1. Suppose that M ∈ Rm×m is defined as

M =

r∑

i=1

K(A,gi)K(BT ,hi).

Then the entries of M are polynomials of the entries of A,B,G,H with total degree at most 2m.

Proof. Since K(A,gi) =
[
gi Agi . . . Am−1gi

]
, and each entry of Ak is a polynomial of the

entries of A with total degree at most k, the entries of K(A,gi) are polynomials of the entries of A
and gi with total degree at most m. Similarly the entries of K(BT ,hi) are polynomials of the entries
of B and hi with total degree at most m. Hence the entries of K(A,gi)K(BT ,hi) are polynomials
of the entries of A,B,G,H with total degree at most 2m. We then conclude that the entries of M
are polynomials of the entries of A,B,G,H with total degree at most 2m.

Lemma 2. Suppose that the LDR weight matrices Ml of a neural network have entries that are
polynomials in their parameters with total degree at most c1nc2

l−1 for some universal constants
c1, c2 ≥ 0. For a fixed data point x, at the l-th layer of a neural network with LDR weight matrices,
each entry of Mlil + bl is a piecewise polynomial of the network parameters θ, with total degree at
most dl, where

d0 = 0, dl = kdl−1 + c1n
c2
l−1 for l = 1, . . . , L.

Thus entries of the output ϕl(Mlil + bl) are piecewise polynomials of θ with total degree at most
kdl. Moreover,

dl ≤ c1k
l−1

l−1∑

j=0

nc2
j . (6)

By Lemma 1, Lemma 2 applies to the specific class of matrices that we use, for c1 = 2 and c2 = 1.
As we will see, it also applies to very general classes of structured matrices.

Proof. We induct on l. For l = 1, since i1 = x is fixed, the entries of M1 are polynomials of θ
of degree at most c1nc2

0 , and so the entries of M1i1 + b1 are polynomials of θ with total degree
at most d1 = c1n

c2
0 . As ϕ is a piecewise polynomials of degree at most k, each entry the output
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ϕ1(M1i1 + b1) is a piecewise polynomial of θ with total degree at most 2n0k. The bound (6) holds
trivially.

Suppose that the lemma is true for some l − 1 ≥ 1. Since the entries of il are piecewise polynomials
of θ with total degree at most kdl−1 and entries of Ml are polynomials of θ with total degree at
most c1nc2

l−1, the entries of Mlil + bl are piecewise polynomials of θ with total degree at most
dl = kdl−1 + c1n

c2
l−1. Thus ϕl(Mlil + bl) have entries that are piecewise polynomials of θ with

total degree at most kdl.

We can bound

dl = kdl−1 + c1n
c2
l−1 ≤ kc1k

l−2
l−2∑

j=0

nc2
j + c1n

c2
l−1 ≤ c1k

l−1
l−1∑

j=0

nc2
j ,

where we have used the fact that k ≥ 1, so c1n
c2
l−1 ≤ c1k

l−1nc2
l−1. This concludes the proof.

Bounding the VC dimension Now we are ready to bound the VC dimension of the neural network.
Theorem 3. For input x ∈ X and parameter θ ∈ RW , let f(x, θ) denote the output of the network.
Let F be the class of functions {x→ f(x, θ) : θ ∈ RW }. Denote signF := {x→ sign f(x, θ) : θ ∈
RW }. Let Wl be the number of parameters up to layer l (i.e., the total number of parameters in layer
1, 2, . . . , l). Define the effective depth as

L̄ :=
1

W

L∑

l=1

Wl,

and the total number of computation units (including the input dimension) as

U :=

L∑

l=0

nl.

Then
VCdim(signF) = O(L̄W log(pU) + L̄LW log k).

In particular, if k = 1 (corresponding to piecewise linear networks) then

VCdim(signF) = O(L̄W log(pU)) = O(LW logW ).

We adapt the proof of the upper bound from Bartlett et al. [4], Harvey et al. [24]. The main technical
tool is Warren’s lemma [48], which bounds the growth function of a set of polynomials. We state a
slightly improved form here from Anthony and Bartlett [3, Theorem 8.3].
Lemma 3. Let p1, . . . , pm be polynomials of degree at most d in n ≤ m variables. Define

K := |{(sign(p1(x)), . . . , sign(pm(x)) : x ∈ Rn}|,
i.e., K is the number of possible sign vectors given by the polynomials. Then K ≤ 2(2emd/n)n.

Proof of Theorem 3. Fixed some large integer m and some inputs x1, . . . ,xm. We want to bound
the number of sign patterns that the neural network can output for the set of input x1, . . . ,xm:

K :=
⏐⏐{(sign f(x1, θ), . . . , sign f(xm, θ)) : θ ∈ RW }

⏐⏐ .
We want to partition the parameter space RW so that for a fixed xj , the output f(xj , θ) is a polynomial
on each region in the partition. Then we can apply Warren’s lemma to bound the number of sign
patterns. Indeed, for any partition S = {P1, . . . , PN} of the parameter space RW , we have

K ≤
N∑

j=1

|{(sign f(x1, θ), . . . , sign f(xm, θ)) : θ ∈ Pj}| . (7)

We construct the partitions iteratively layer by layer, through a sequence S0,S1, . . . ,SL−1 of succes-
sive refinements, satisfying two properties:
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1. |S0| = 1 and for each 1 ≤ l ≤ L− 1,

|Sl| ≤ |Sl−1| 2
(
2empnldl

Wl

)Wl

,

where nl is the dimension of the output of the l-th layer, dl is the bound on the total degree
of Mlil + bl as piecewise polynomials of θ as defined in Lemma 2, and Wl is the number
of parameters up to layer l (i.e., the total number of parameters in layer 1, 2, . . . , l).

2. For each l = 0, . . . , L − 1, for each element S of Sl, for each fixed data point xj (with
j = 1, . . . ,m), the entries of the output ϕl(Mlil +bl) when restricted to S are polynomials
of θ with total degree at most kdl−1.

We can define S0 = RW , which satisfies property 2, since at layer 1, the entries of i1 = xj (for fixed
xj) are polynomials of θ of degree d0 = 0.

Suppose that we have constructed S0, . . . ,Sl−1, and we want to define Sl. For any h ∈ [nl], j ∈ [m],
and S ∈ Sl−1, let ph,xj ,S(θ) = (Mlil + bl)h|S be the h-th entry of Mlil + bl restricted to the
region S. By the inductive hypothesis, for each S ∈ Sl−1, the entries of il when restricted to S are
polynomials of θ of total degree at most kdl−1. Thus by Lemma 2, the entries of Mlil + bl when
restricted to S are polynomials of θ with total degree at most kdl−1 + c1n

c2
l−1 = dl, and depends on

at most Wl many variables.

Since the activation function is piecewise polynomial with at most p pieces, let {t1, . . . , tp} be the
set of breakpoints. For any fixed S ∈ Sl−1, by Lemma 3, the polynomials

{
ph,xj ,S(θ)− ti : h ∈ [nl], j ∈ [m], i ∈ [p]

}

can have at most

Π := 2

(
2e(nlmp)dl

Wl

)Wl

distinct sign patterns when θ ∈ RW . We can then partition RW into this many regions so that within
each region, all these polynomials have the same signs. Intersecting all these regions with S yields
a partition of S into at most Π subregions. Applying this for all S ∈ Sl−1 gives a partition Sl that
satisfies the property 1.

Fix some S′ ∈ Sn. When θ is restricted to S′, by construction, all the polynomials
{
ph,xj ,S(θ)− ti : h ∈ [nl], j ∈ [m], i ∈ [p]

}

have the same sign. This means that the entries of Mlil + bl lie between two breakpoints of the
activation function, and so the entries of the output ϕl(Mlil + bl) are fixed polynomials in Wl

variables of degree at most kdl.

By this recursive construction, SL−1 is a partition of RW such that for S ∈ SL−1 the network output
for any input xj is a fixed polynomial of θ ∈ S of degree at most kdL−1 + c1n

c2
L−1 = dL (recall that

we assume the activation function of the final layer is the identity). Hence we can apply Lemma 3
again:

|{(sign f(x1, θ), . . . , sign f(xm, θ)) : θ ∈ S}| ≤ 2

(
2emkdL
WL

)WL

.

By property 1, we can bound the size of SL−1:

|SL| ≤
L−1∏

l=1

2

(
2emnlpdl

Wl

)Wl

.

Combining the two bounds along with equation (7) yields

K ≤
L∏

l=1

2

(
2empnldl

Wl

)Wl

.
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We can take logarithm and apply Jensen’s inequality, with W̄ :=
∑L

l=1 Wl:

log2 K ≤ L+

L∑

l=1

Wl log2
2empnldl

Wl

= L+ W̄

L∑

l=1

Wl

W̄
log2

2empnldl
Wl

≤ L+ W̄ log2

(
L∑

l=1

Wl

W̄

2empnldl
Wl

)
(Jensen’s inequality)

= L+ W̄ log2
2emp

∑L
l=1 nldl

W̄
.

We can bound
∑

nldl using the bound on dl from Lemma 2:

L∑

l=1

nldl ≤
L∑

l=1

nlc1k
l−1

l−1∑

j=0

nc2
j ≤ LUc1k

L−1U c2 ≤ c1U
c2+2kL,

where we used the fact that L ≤ U . Thus

log2 K ≤ L+ W̄ log2
2c1empU2+c2kL

W̄
.

To bound the VC-dimension, recall that by definition, if VCdim(signF) = m then exists m data
points x1, . . . ,xm such that the output of the model can have 2n sign patterns. The bound on log2 K
then implies

VCdim(signF) ≤ L+ W̄ log2
2c1epU

2+c2kLVCdim(signF)
W̄

.

We then use Lemma 4 below, noting that 2c1epU2+c2kL ≥ 16, to conclude that

VCdim(signF) ≤ L+ W̄ log2(2c1epU
2+c2kL log2(2c1epU

2+c2kL)) = O(L̄W log(pU) + L̄LW log k),

completing the proof.

A bound on the VC dimension immediate yields a bound on the sample complexity of learning from
this class of neural networks with LDR matrices [47].
Corollary 2. The class of neural network with LDR matrices as weights and piecewise linear
activation is (ϵ, δ)-PAC-learnable with a sample of size

O

(
LW logW + log 1

δ

ϵ

)
.

Since the number of parameters W is around the square root of the number of parameters of a network
with unstructured layers (assuming fixed rank of the LDR matrices), the sample complexity of LDR
networks is much smaller than that of general unstructured networks.
Lemma 4 (Lemma 16 of [24]). Suppose that 2m ≤ 2t(mr/w)w for some r ≥ 16 and m ≥ w ≥
t ≥ 0. Then, m ≤ t+ w log2(2r log2 r).

Extension to rational functions. We now show that Theorem 3 holds for matrices where the
entries are rational functions—rather than polynomials—of its parameters, incurring only a constant
in the bound. To define the function class signF , we account for the possibility of poles by defining
sign(a/0) = 0.

We only need to check that Lemma 2 and Lemma 3 still hold when polynomials are replaced by
rational functions everywhere, and the degree of a rational function is defined as the usual deg(a/b) =
max{deg a,deg b}. To show Lemma 2 still holds, it suffices that the compositional degree bound
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deg(f ◦ g) ≤ deg(f) deg(g) holds for rational functions f, g, just as in the polynomial case. To
show Lemma 3 in the case when pi = ai/bi are rational functions, we note that sign(pi(x)) =
sign(ai(x)bi(x)), and furthermore deg(aibi) ≤ 2 deg(pi). Appealing to the polynomial version of
Lemma 3 shows that it holds in the rational function setting with a slightly weaker upper bound
K ≤ 2(4emd/n)n. This gets converted to a constant factor in the result of Theorem 3.

Next, we extend Lemma 1 by showing that generic LDR matrices have entries which are rational
functions of their parameters. This immediately lets us conclude that neural networks built from any
LDR matrices satisfy the VC dimension bounds of Theorem 3.
Lemma 5. If M ∈ Rm×m satisfies AM −MB = GHT , then the entries of M are rational
functions of the entries of A,B,G,H with total degree at most c1mc2 for some universal constants
c1, c2 > 0.

Proof. The vectorization of the Sylvester equation AM−MB = R is (I⊗A−B⊤⊗I) vec(M) =
vec(R), where vec denotes the vectorization operation by stacking a matrix’s columns, and ⊗ is
the Kronecker product. Note that the entries of N−1 for an arbitrary matrix N ∈ Rn×n are rational
functions with degree n in the entries of N, and R = GH⊤ has degree 2 in the entries of G,H.
Therefore the entries of

vec(M) = (I⊗A−B⊤ ⊗ I)−1 vec(R)

have degree n2 + 2 in the entries of A,B,G,H.

Note that many other classes of matrices satisfy this lemma. For example, a large class of matrices
satisfying a property called low recurrence width was recently introduced as a way of generalizing
many known structured matrices [14]. The low recurrence width matrices are explicitly defined
through a polynomial recurrence and satisfy the bounded degree condition. Additionally, Lemma 5
holds when the parameters A,B themselves are structured matrices with entries having polynomial
degree in terms of some parameters. This includes the case when they are quasiseparable matrices,
the most general class of LDR previously analyzed [14].

E Additional results

E.1 Additional baselines and comparisons at multiple budgets

In Tables 6 and 7 we compare to baselines at parameter budgets corresponding to both the LDR-TD
and LDR-SD classes in the SHL and CNN models. In Tables 8 and 9, we also compare to two
additional baselines, network pruning [23] and a baseline used in [7], in which the number of hidden
units is reduced to meet the parameter budget. We refer to this baseline as RHU ("reduced hidden
units"). We show consistent improvements of LDR-SD over both methods at several budgets. We note
that unlike the structured matrix methods which provide compression benefits during both training
and inference, pruning requires first training the original model, followed by retraining with a fixed
sparsity pattern.

E.2 Sample complexity and generalization

As shown in Tables 10 and 11, we investigated how the performance of the structured and general
unstructured fully-connected layers varied with the amount of training data. On the MNIST variants,
we trained both the single hidden layer and CNN models with random subsamples of 25%, 50%, and
75% of the training set, with 15% of the training set used for validation in all settings. In addition, in
Table 12, we compare the generalization error of structured classes with an unstructured model, and
find that the structured classes have consistently lower generalization error.

E.3 Additional visualizations

In Figure 6, we visualize the learned subdiagonal on NORB along with images from the dataset.

On the MNIST-bg-rot dataset [30], we note that Chen et al. [7] also tested several methods on this
dataset, including Random Edge Removal [11], Low Rank Decomposition [15], Dark Knowledge [25],
HashedNets [7], and HashedNets with Dark Knowledge, and reported test errors of 73.17, 80.63,
79.03, 77.40, 59.20, and 58.25, where each method had 12406 parameters in the architecture. We
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Table 6: Test accuracy when replacing the hidden layer with structured classes in the single hidden layer
architecture, at parameter budgets corresponding to LDR-TD and LDR-SD rank one. Rank is in parentheses.
The first group of structured methods (in orange) all have compression factors (relative to a general unstructured
layer) of 98 on MNIST-bg-rot and MNIST-noise, and 128 on CIFAR-10 and NORB. The second group of
structured methods (in blue) all have compression factors of 196 on MNIST-bg-rot and MNIST-noise, and 256
on CIFAR-10 and NORB.

Method MNIST-bg-rot MNIST-noise CIFAR-10 NORB
Unstructured 44.08 65.15 46.03 59.83
LDR-TD (r = 1) 45.81 78.45 45.33 62.75
Toeplitz-like [45] (r = 4) 42.67 75.75 41.78 59.38
Hankel-like (r = 4) 42.23 73.65 41.40 60.09
Vandermonde-like (r = 4) 37.14 59.80 33.93 48.98
Low-rank [15] (r = 4) 35.67 52.25 32.28 43.66

LDR-SD (r = 1) 44.74 78.80 43.29 63.78
Toeplitz-like [45] (r = 2) 42.07 74.25 40.68 57.27
Hankel-like (r = 2) 41.01 71.20 40.46 57.95
Vandermonde-like (r = 2) 33.56 50.85 28.99 43.21
Low-rank [15] (r = 2) 32.64 38.85 24.93 37.03

Table 7: Test accuracy when replacing the fully-connected layer with structured classes in the CNN architecture,
at parameter budgets corresponding to LDR-TD and LDR-SD rank one. Rank is in parentheses. The first group
of structured methods (in orange) all have compression factors (relative to a general unstructured layer) of 98 on
MNIST-bg-rot and MNIST-noise, and 128 on CIFAR-10 and NORB. The second group of structured methods
(in blue) all have compression factors of 196 on MNIST-bg-rot and MNIST-noise, and 256 on CIFAR-10 and
NORB.

Method MNIST-bg-rot MNIST-noise CIFAR-10 NORB
Fully-connected 67.94 90.30 68.09 75.16
LDR-TD (r = 1) 68.79 92.55 66.63 74.23
Toeplitz-like [45] (r = 4) 63.23 91.60 67.10 72.25
Hankel-like (r = 4) 64.21 90.80 68.10 71.23
Vandermonde-like (r = 4) 61.76 90.40 63.63 72.11
Low-rank [15] (r = 4) 60.35 87.30 60.90 71.47

LDR-SD (r = 1) 67.40 92.20 65.48 73.63
Toeplitz-like [45] (r = 2) 63.63 91.45 67.15 71.64
Hankel-like (r = 2) 64.08 90.65 67.49 71.21
Vandermonde-like (r = 2) 51.38 86.50 58.00 68.08
Low-rank [15] (r = 2) 41.91 71.15 48.48 65.34

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a) Subdiagonal of B (NORB) (b) Images from NORB

Figure 6: We visualize the learned subdiagonal of the operator B and images from the NORB dataset. We
observe a centering phenomenon similar to that described in Figure 4.

found that our LDR-SD class, with 10986 parameters in the architecture, achieved a test error of 55.26,
as shown in Table 6, outperforming all methods evaluated by Chen et al. [7]. Sindhwani et al. [45]
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Table 8: On the MNIST variants, in the single hidden layer architecture, we compare LDR-SD, pruning [23],
and a baseline which reduces the number of hidden units (denoted RHU), at multiple budgets. At each budget,
we adjust the number of pruned weights or hidden units to match as closely as possible the parameter budget of
LDR-SD. Parameter counts of fully-connected layers for LDR-SD and pruning at ranks 1,2,4,8,12, and 16 are
10986, 12554, 15690, 21962, 28234, and 34506 respectively, and 11126, 12714, 15890, 22242, 28594, 34946 for
RHU (for which parameter count cannot be controlled exactly). As shown above, we find that the classification
accuracy of LDR-SD consistently exceeds that of both methods.

Rank of LDR-SD LDR-SD Pruning [23] RHU [7]

1 44.74 40.41 37.18
2 44.46 41.18 37.60
4 47.72 42.45 37.98
8 48.76 43.52 39.77
12 48.90 43.19 40.56
16 49.51 43.58 40.70

(a) MNIST-bg-rot

Rank of LDR-SD LDR-SD Pruning [23] RHU [7]

1 78.80 67.75 62.85
2 77.95 69.35 62.55
4 78.32 68.25 63.40
8 78.63 67.25 64.45
12 78.33 67.30 63.85
16 78.08 66.95 66.10

(b) MNIST-noise

Table 9: On the MNIST variants, in the CNN architecture, we compare LDR-SD, pruning [23], and a baseline
which reduces the number of hidden units (denoted RHU), at multiple budgets. At each budget, we adjust the
number of pruned weights or hidden units to match as closely as possible the parameter budget of LDR-SD.
Parameter counts of fully-connected layers for LDR-SD and pruning at ranks 1,2,4,8,12, and 16 are 11770,
13338, 16474, 22746, 29018, and 35290 respectively, and 11935, 13525, 16705, 23065, 29425, 35785 for
RHU (for which parameter count cannot be controlled exactly). As shown above, we find that the classification
accuracy of LDR-SD consistently exceeds that of both methods.

Rank of LDR-SD LDR-SD Pruning [23] RHU [7]

1 67.40 64.25 64.03
2 67.53 64.05 64.67
4 67.96 65.50 66.37
8 67.21 64.12 64.70
12 68.54 65.65 65.99
16 67.00 65.59 66.47

(a) MNIST-bg-rot

Rank of LDR-SD LDR-SD Pruning [23] RHU [7]

1 92.20 90.80 90.95
2 92.75 91.65 91.00
4 91.30 90.60 91.25
8 91.95 91.05 90.65
12 92.10 90.00 90.85
16 93.20 90.55 90.40

(b) MNIST-noise
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Table 10: On the MNIST variants, in the single hidden layer architecture, we show how the number of training
samples affects the performance of the unstructured model and the structured classes. Columns correspond
to models trained on 25%, 50%, 75% and 100% of the training data (randomly subsampled). LDR-TD and
LDR-SD consistently outperform the structured baselines at the tested subsampling ratios. On MNIST-bg-rot,
LDR-TD only needs 75% of the training data to outperform the unstructured model trained on 100% of the
training data. On MNIST-noise, both LDR-TD and LDR-SD only need 25% of the training data to outperform
the unstructured layer. All are rank one.

Method 25% 50% 75% 100%
Unstructured 34.46 38.80 43.35 44.08

LDR-TD 34.01 39.59 44.35 45.81
LDR-SD 35.64 39.78 42.72 44.74
Toeplitz-like 33.71 36.44 39.32 41.12
Low-rank 21.44 23.46 23.48 25.06

(a) MNIST-bg-rot

Method 25% 50% 75% 100%
Unstructured 59.30 61.85 65.35 65.15

LDR-TD 65.45 74.60 77.45 78.45
LDR-SD 67.90 71.15 76.95 78.80
Toeplitz-like 56.15 67.75 72.30 73.95
Low-rank 24.25 26.20 26.85 26.40

(b) MNIST-noise

Table 11: On the MNIST variants, in the CNN architecture, we show how the number of training samples affects
the performance of the unstructured model and the structured classes. Columns correspond to models trained on
25%, 50%, 75% and 100% of the training data (randomly subsampled). LDR-TD and LDR-SD consistently
outperform the structured baselines at the tested subsampling ratios. On MNIST-noise, both LDR-TD and
LDR-SD only need 50% of the training data to outperform the unstructured layer. All are rank one.

Method 25% 50% 75% 100%
Unstructured 54.12 62.53 67.52 67.94

LDR-TD 53.66 62.15 67.25 68.79
LDR-SD 50.72 61.92 65.93 67.40
Toeplitz-like 49.10 57.20 61.53 63.00
Low-rank 26.98 27.97 28.97 29.63

(a) MNIST-bg-rot

Method 25% 50% 75% 100%
Unstructured 81.85 88.25 89.75 90.30

LDR-TD 86.45 91.35 93.00 92.55
LDR-SD 86.95 90.90 91.55 92.20
Toeplitz-like 81.65 88.15 90.90 90.95
Low-rank 33.15 38.40 42.55 44.55

(b) MNIST-noise

Table 12: Generalization error for unstructured, LDR-TD, LDR-SD, Toeplitz-like, low-rank classes on the
single hidden layer architecture. Consistent with Theorem 2, the structured classes have consistently lower
generalization error than the unstructured model. All are rank one.

Method MNIST-bg-rot MNIST-noise CIFAR-10 NORB
Unstructured 55.78 21.63 34.32 40.03

LDR-TD 13.52 11.36 7.10 9.51
LDR-SD 12.87 12.65 6.29 8.68
Toeplitz-like [45] 7.98 15.80 5.59 7.87
Low-rank [15] 8.40 0.31 0.09 2.59

later also tested on this dataset, and reported test errors of 68.4, 62.11, and 55.21 for Fastfood (10202
parameters), Circulant (8634 parameters), and Toeplitz-like, r = 2 (10986 parameters). LDR-SD
exceeds their reported results for Fastfood and Circulant [8], but not that of Toeplitz-like. We did
find that our proposed classes consistently exceeded the performance of our own implementation of
Toeplitz-like on this dataset (Table 1, Figure 3, and Tables 6 and 7).

E.4 Rectangles dataset

We provide an interesting example of a case where LDR-TD and LDR-SD do not exceed the
performance of the fixed operator classes in the single hidden layer architecture. In this simple dataset
from Larochelle et al. [30], the task is to classify a binary image of a rectangle as having a greater
length or width. We show examples of the dataset in Figure 7. On this dataset, in contrast to the more
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challenging datasets (MNIST-bg-rot [30], MNIST-noise [30], CIFAR-10 [29], and NORB [32]) we
tested on, every structured class outperforms an unconstrained model (622506 parameters), including
the circulant class [8] which compresses the hidden layer by 784x, and expanding the class beyond
Toeplitz-like does not improve performance. We hypothesize that this is because the Toeplitz-like
class may enforce the right structure, in the sense that it is sufficiently expressive to fit a perfect model
on this dataset, but not expansive enough to lead to overfitting. For example, while the Toeplitz-
like operators model approximate shift equivariance (discussed in Section 4 and Proposition 7 in
Section C.3), the additional scaling that subdiagonal operators provide is unnecessary on these binary
inputs.

Figure 7: Examples of images from the rectangles dataset [30].

Table 13: Test accuracy when replacing the hidden layer with structured classes on the rectangles dataset [30].
Where applicable, rank (r) is in parentheses, and the number of parameters in the architecture is in italics below
each method.

Method Test Accuracy

Unconstrained 91.94
622506

LDR-TD (r = 1) 98.53
14122

LDR-SD (r = 1) 98.39
10986

Toeplitz-like (r = 4) [45] 99.29
14122

Hankel-like (r = 4) 97.77
14122

Vandermonde-like (r = 4) 94.11
14122

Low-rank (r = 4) [15] 92.80
14122

Fastfood [49] 92.20
10202

Circulant [8] 95.58
8634

E.5 Acceleration at inference time

We empirically study the acceleration obtained at inference time (on CPU) with our implementation
of the algorithms for multiplication by LDR-SD described in Appendix C.2. We generated random
parameters for each class and ran each multiplication algorithm 1000 times to compare the speedup
of each class over an unstructured multiply. Each test was repeated 10 times, and the minimum total
runtime over the 10 tests was used for each class. As shown in Figure 8 and Table 14, at n ≥ 4096,
our simple Python implementation is 3.34-46.06x faster than the highly optimized unstructured
matrix-vector multiply (a BLAS level 2 operation). We also compare with two other structured
classes, low-rank and Toeplitz-like, at r = 1, 2, 4, 8, 16. A batch size of one was used in all tests.
The time complexity of multiplication by low-rank and Toeplitz-like is O(nr) and O(nr log n)
respectively, compared to O(nr log2 n) for LDR-SD.
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Table 14: Acceleration of n× n structured classes over unstructured matrix-vector multiply at inference time.
Experimental details are in Appendix E.5.

Rank

n 1 2 4 8 16

29 5.15× 101 2.43× 101 2.46× 101 2.08× 101 1.81× 101

210 1.39× 102 5.41× 101 5.66× 101 4.62× 101 3.43× 101

211 4.14× 102 1.60× 102 1.71× 102 1.05× 102 6.90× 101

212 2.38× 103 8.71× 102 7.46× 102 4.73× 102 3.59× 102

213 5.96× 103 1.75× 103 1.65× 103 1.13× 103 8.86× 102

214 8.35× 103 3.44× 103 3.40× 103 2.29× 103 1.74× 103

215 1.79× 104 7.50× 103 7.53× 103 4.91× 103 3.70× 103

(a) Low-rank

Rank

n 1 2 4 8 16

29 3.06× 10−1 2.60× 10−1 2.32× 10−1 1.86× 10−1 1.61× 10−1

210 7.34× 10−1 6.21× 10−1 5.18× 10−1 4.00× 10−1 3.28× 10−1

211 1.90× 100 1.71× 100 1.38× 100 1.08× 100 8.46× 10−1

212 1.23× 101 1.01× 101 7.92× 100 5.97× 100 4.62× 100

213 3.34× 101 2.73× 101 2.26× 101 1.52× 101 1.23× 101

214 6.96× 101 5.68× 101 4.19× 101 3.00× 101 2.26× 101

215 1.49× 102 1.19× 102 9.07× 101 5.46× 101 3.82× 101

(b) Toeplitz-like

Rank

n 1 2 4 8 16

29 6.68× 10−2 4.63× 10−2 4.05× 10−2 3.10× 10−2 2.56× 10−2

210 1.49× 10−1 1.20× 10−1 9.45× 10−2 6.73× 10−2 5.24× 10−2

211 4.99× 10−1 4.32× 10−1 3.02× 10−1 1.94× 10−1 1.37× 10−1

212 3.34× 100 2.57× 100 1.61× 100 1.06× 100 7.52× 10−1

213 9.71× 100 6.61× 100 4.40× 100 2.46× 100 1.68× 100

214 2.12× 101 1.41× 101 8.38× 100 4.35× 100 3.00× 100

215 4.61× 101 2.82× 101 1.60× 101 8.58× 100 5.70× 100

(c) LDR-SD

F Experimental details

F.1 Image classification

In Table 15, we provide details on the datasets we use for evaluation. For all our experiments, batch
sizes were chosen to be 50. NORB was downsampled to 32× 32, and the left stereo image was used.
Training was performed with stochastic gradient descent with momentum, with the number of epochs
set to 50 on all datasets. 15% of the training data was used for the validation set on all experiments.
We fixed momentum at 0.9 for all methods for all experiments, and performed a grid search over
learning rate. Unless otherwise stated, for each method, we tested the learning rates {0.0002, 0.0005,
0.001, 0.002}, with three trials (with random initializations) per learning rate. For each trial, we
test on the validation set at each epoch, and report the test accuracy of the model with the highest
validation accuracy, over all learning rates, trials, and epochs.
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Figure 8: Acceleration of n× n structured classes over unstructured matrix-vector multiply at inference time.
At n ≥ 4096, LDR-SD (r = 1) achieves a speedup of 3.34-46.06x over unstructured. Data for higher ranks
are shown in Table 14. The comparison to the low-rank and Toeplitz-like classes illustrates a tradeoff involved
in broadening the class of structured matrices we learn over. Though LDR-SD consistently outperforms these
classes on downstream quality, its computational cost of multiplication is O(nr log2 n), compared to O(nr)
and O(nr logn) for low-rank and Toeplitz-like respectively. Experimental details are in Appendix E.5.

In Figure 3, for each method and each of the four learning rates, we perform five trials with random
initializations and report the average and standard deviation of the test accuracy of the learning rate
with the highest average validation accuracy.

Table 15: Overview of the image classification datasets used in this work. For all datasets, 15% of the training
set was used for the validation set.

Dataset Training Examples Test Examples Number of Classes

MNIST-bg-rot [30] 12000 50000 10
MNIST-noise [30] 12000 2000 10
CIFAR-10 [29] 50000 10000 10
NORB [32] 291600 58320 6
Rectangles [30] 1200 50000 2

Single hidden layer architecture In these experiments, we used an architecture consisting of a
fully-connected hidden layer, followed by a fully-connected softmax layer. In order to be consistent
with the architecture used in Sindhwani et al. [45], we do not use a bias term in the hidden layer.

CNN architecture In these experiments, shown in Table 7 in Appendix E, we tested on a LeNet-
based architecture. The architecture has 2 convolution/pool layers with 6 and 16 channels respectively,
followed by a fully-connected layer, followed by fully-connected logit/softmax layer. We replaced
the second to last fully-connected layer, which was of dimensions 784× 784 for the MNIST-bg-rot
and MNIST-noise datasets, and 1024× 1024 for the CIFAR-10 and NORB experiments.

Replacing convolutional layers This experiment corresponds to Table 3.

Here, we investigated whether the convolutional layers of CNNs can be learned automatically. For
our experiments, we test on the simplest possible multi-channel CNN model on the CIFAR-10 dataset.
The model consists of one layer of convolutional channels (3 RGB in channels, 3 out channels, stride
5), followed by a fully-connected layer and a final FC+softmax layer (total of 4 layers). We replace
the convolutions with various structured matrices of the same dimensions, keeping the same 3× 3
channel structure (e.g. it would consist of 3 · 3 = 9 square structured matrices) and number of hidden
units.9

The LDR classes benefit from being composed with LDR matrices of the same type (due to the
composition property, Proposition 1(c)), so we additionally replace the later FC layer with the same
structured matrix type.

9The convolutions are padded to ensure their input and output dimensions are equal.
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By Proposition 1(d), channels of Toeplitz-like matrices form a larger Toeplitz-like matrix of the same
size. Using this insight, we consider replacing the channel structure of the convolutional layer with
either channels of structured matrices or a single wide structured matrix. (Also, note that this is able
to leverage the asymptotic fast nature of our structured classes.)

Because it seems that convolutional layers are strongly dependent on pooling – our structured matrices
outperform them in isolation – we compare against a version of the CNN with an additional pooling
layer after the convolutional channels. Note that this comparison is the same basic four layer model
with a structured matrix vs. a five layer convolutional model with pooling. Since the architectures are
quite different and difficult to directly compare, we also experimented with adding more hidden units
to the pooling model.

F.2 Language modeling

For a language modeling application10, we explored replacing weight matrices in a recurrent neural
network with structured matrices. We evaluate on a single layer LSTM architecture, defined by the
update equations:

i = σ(Wiix+ bii +Whih+ bhi)

f = σ(Wifx+ bif +Whfh+ bhf )

g = tanh(Wigx+ big +Whgh+ bhg)

o = σ(Wiox+ bio +Whoh+ bho)

c′ = f ∗ c+ i ∗ g
h′ = o tanh(c′)

In our experiments we replace the matrices Wii,Wif ,Wig,Wio with structured matrices. We use a
hidden layer of size 128, and word embedding size of 128. We evaluate on the Wikitext-2 dataset,
which consists of Wikipedia articles (2,088,628 training, 217,646 validation, and 245,569 test tokens).
The total vocabulary is of size 33,278. We use the default hyperparameters and train using stochastic
gradient descent with an initial learning rate of 20. The learning rate is annealed 4x after each epoch
if performance does not improve on the validation set. Results are shown in Table 2.

10Code available at https://github.com/pytorch/examples/tree/master/word_language_model.
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